Malvern Panalytical Scientific Award 2023

Our 2023 Scientific Award is now open – and there’s a €5,000 prize for the best entry.
Entries close August 31st – you’ve still got time!

For Food Quality And Safety, This Hyperspectral Tool Is A Cut Above

For Food Quality And Safety, This Hyperspectral Tool Is A Cut Above

Automated, accurate, and flexible hyperspectral machine vision has revolutionised food manufacturing and inspection processes, such as in the meat and fruit industries.

MV.X – Headwall’s award-winning hyperspectral technology – solves and highlights food quality and safety issues using its powerful, embedded computing power and a high-performance VNIR spectrometer to provide real-time, actionable results. 

Introducing The Hyperspec® MV.X

Hyperspectral imaging is no longer limited to the lab, as Headwall’s MV.X combines high-speed processing power with industry-leading hyperspectral imagery for live classification. 

Clients, such as food-processing plants, use this to detect potentially harmful foreign materials for removal. 

You can even use the MV.X offline to create AI detection and grading algorithms which can then be uploaded and stored on units installed on the line and which act on incoming hyperspectral data in real time. 

Designed for use in harsh industrial environments and capable of functioning both inside and outside, the MV.X offers simplicity of installation and direct output of actionable results. 

 

How To Apply The Hyperspec® MV.X

Foreign object detection Safety and Pathogen detection Sorting and grading Process analytics Contamination detection

 

Fruits and vegetables such as apples and tomatoes aren’t all the same. They differ in shape, ripeness, optical qualities, weight, and bruising. 

It is more efficient to market the harvest when these qualities can be precisely measured. 

It is also important that produce is sorted accurately to prevent inaccurate pricing.

Detect And Measure With The Hyperspec® MV.X

Using hyperspectral imaging to detect foreign matter and pathogens that are invisible to the naked eye can improve the safety of food. 

This form of imaging provides far better material classification than RGB colour cameras on poultry, seafood, lamb, beef, and specialty crops.

A high level of biogenic amines indicates the decomposition of seafood. 

A rise in histamine levels is typically associated with such decomposition. This is also called “scombroid fish poisoning”.

By measuring the concentration of histamines in fish, hyperspectral imaging provides a method for determining the freshness of fish in an instant, contact-free manner.

 

Sort And Detect With The Hyperspec® MV.X 

 

To meet government regulations, the global food inspection industry needs newer and more precise tools for everything from specialty crops to seafood and poultry.

In order to overcome the uncertainties resulting from human inspections or limited capacity RGB cameras, more advanced high-resolution imaging systems are being adopted that are also reliable, affordable, and easy to deploy.

Using techniques such as hyperspectral imaging, food producers can sort and detect contamination at the right time, improving product quality and consistency and avoiding costly recalls.

A key differentiator for hyperspectral imaging sensors is their ability to classify food based on a number of geometrical and spectral parameters. 

Rather than simply interpreting “pass” or “fail” measurements, nuts and specialty crops can be inspected in ways that maximise quality and productivity.

Benefits Of The Hyperspec® MV.X

• Visualise value at the speed of light

• Classify and detect using the spectral dimension

• Hyperspectral classification is intuitive, reliable, and fast

 

Key Features Of The Hyperspec® MV.X

Specifically designed for advanced machine vision and process analytics applications, the dust-proof and watertight MX.V system is compact, dust-proof, and watertight. 

The perClass® MIRA software features machine learning and artificial intelligence to process data runtime and simplify model development. 

The MV.X web user interface also allows for remote system control and maintenance.

Suitable for both indoor and outdoor installations, this rugged solution can be installed in any production environment. It includes:

  • Hyperspectral Imaging System – not just a camera
  • Built for challenging VNIR (400-1000nm) machine-vision apps on the processing line
  • Fast onboard, embedded processing for real-time classification
  • GenICam-compliant GigE interface with an IP67-rated housing
  • Flexible yet robust and straightforward workflow

Technical Specifications

The Hyperspec® MV.X has:

  • A spectral range of 400-1000nm
  • 270 spectral bands
  • 640 spatial pixels
  • Max frame rate: as high as 485Hz
  • FWHM slit image: 6nm

What is Spectral Imaging?

In spectral imaging, every location in an image plane is sampled for spectral information.

There are several techniques available, based on a variety of factors, including spectral resolution, number of bands, the width, and the presence of adjacent bands.

The process of hyperspectral imaging, like other types of spectral imaging, involves collecting and analysing information that spans the electromagnetic spectrum.

Using hyperspectral imaging, you gain information about each pixel in an image of a scene, in order to locate objects, identify materials, or detect processes.

PAS provides leading Spectral Imaging solutions and support. For more information on Headwall’s Hyperspec® MV.X and how it can help your business, give us a call today.

Related links:

Product data sheet (PDF)

Oregano & Parsley: Quality Inspection of Herbs & Spices (PDF)

The Future Of Food (PDF)

Food Authority (NSW)

Food Standards Australia & New Zealand

Food Quality & Safety

Department of Agriculture, Water and the Environment

Department of Health: Food Standards And Safety

The Food Safety Information Council

Gold Testing is Big Business And Niton is The Gold Standard

Gold Testing Is Big Business And Niton Is The Gold Standard

With the high price and volatility of gold today, more efficient gold-testing methods are being used to establish the value of items like jewellery or coins being purchased, sold, or recycled.

Testing gold and precious metals demands accurate and reliable results to eliminate variability and subjectivity, and ensure fair transactions. 

That’s why businesses turn to our portable X-ray fluorescence (PXRF) analysers for fast, accurate, and non-destructive analysis of precious metals entering their shops. 

In as little as 3-10 seconds, our XRF analysers provide exact karat weight and percentages of all elements within an item they test, enabling them to detect non-standard and counterfeit gold with the accuracy of a fire assay.

The electronic testing approach also appeals to people who don’t want to deal with acids in the testing process. 

The most advanced portable electronic gold tester is an XRF. 

These battery-operated testers contain an X-ray tube and shoot a small X-ray beam at the piece being tested. 

The beam interacts with the elements in the piece and the machine reads the results. 

The PAS range of analysers for gold buyers

PAS’ XRF analysers supply concentrations for 21 elements and karat values in seconds.

Our Thermo Fisher Scientific Niton DXL and Niton XL2 precious metal and gold purity analysers are equipped with proprietary, patented AuDIT gold-plating detection technology. 

Several independent, complementary methods in the AuDIT (Au/gold Detection & Identification Technology) software work in tandem to alert you to the probability that an item is plated, regardless of the gold concentration of the plated surface layer. 

AuDIT technology works for vermeil (gold-plated silver), as well as gold-plated copper, steel, tungsten and any other non-gold substrate.

  • Precious metals and gold testing machines simultaneously measure the content of all gold and precious metals without manually changing your calibration based on the metal you’re analysing
  • Precisely determine the presence and concentration of more than 22 precious metal and trace alloying elements, including but not limited to gold (Au), Silver (Ag), Platinum (Pt), Palladium (Pd), Nickel (Ni), Tungsten (W), and Lead (Pb).
  • Eliminate the toxicity associated with nitric acid test methods
  • Capture images and focus in on small areas using our integrated camera and small spot feature (depends on model).

Niton™ XL2 Precious Metal AnalyserThermo Fisher Scientific – XRFNiton™ DXL AnalyserThermo Fisher Scientific – Bench Top XRF
* Standard analytical range: >25 elements from S to U (varies by application).
* Point and shoot simplicity—very easy to use even by nontechnical personnel
* Ideally suited for retail environments
* Non-destructive analysis with near-instantaneous results
* Ergonomic design
* Innovative colour touch-screen display and touch-screen keyboard
* Improved intuitive interface
* CCD Camera
* Large sample chamber with a back window for customer view
* Optional small spot for the isolation of small components
Learn moreLearn more

The benefits of Niton Portable XRF Analysers

These tools offer instantaneous, accurate and non-destructive precious metals analysis.

When quick and informed decisions need to be made to ensure the profitability of a transaction in precious metals trading, or to make sure jewellery is free of toxic substances, the use of X-ray fluorescence spectroscopy can be invaluable.

Thermo Scientific Niton portable XRF desktop and handheld analysers provide pawn shops, cash-for-gold businesses, jewellers, recyclers and refineries with fast, reliable and accurate results for:

  • Determination of karat grade and fineness
  • Analysis of all precious metals including gold
  • Analysis of alloying elements like copper, zinc, nickel, etc.
  • Analysis of toxic elements like cadmium or lead etc.
  • Detection of gold plating presence with the patented AuDIT Technology

Unlike traditional test methods, all precious metals and alloys, in various sizes and shapes are tested completely non-destructively.

8 reasons not to use acid to test jewellery

Gold is traditionally tested by applying a small drop of strong acid to its surface, such as nitric acid. Metals tend to bubble and fizz while precious metals don’t. Despite the fact that results are generally considered reliable, there are several reasons to avoid acid and instead use a handheld analyser.

  1. Counting karats with acid isn’t very accurate. It rounds to the nearest acid testing solution.
  2. You must scratch the gold on a stone, so you are actually rubbing some of the gold off the jewellery.
  3. Gold plating cannot be determined unless the gold is deeply scratched.
  4. Using these solutions is dangerous and unhealthy. Since testing solutions contain corrosives, they must be handled and stored with extreme care.
  5. Iron and steel items will pass the stone test for platinum, so you must additionally use a powerful magnet to identify these metals.
  6. When testing for silver, the solution will dull the polishing of the piece, and leave a mark where the acid was placed.
  7. Acid will not tell you what other alloying elements make up the composition of the jewellery.
  8. Counterfeiters have managed to develop a stainless steel alloy that will acid test as 18kt white gold, but contains no precious metal at all. Many people have been duped by chains made from this material.

We do not recommend using portable XRF analysis on gold bars, and bullions. If it is used, we strongly suggest that a secondary analysis is done just to ensure the absence of thick plating or any adulteration.

How XRF in gold testing works

X-ray fluorescence spectroscopy begins by exposing the sample in question to X-rays rays. 

The high-energy photons tend to knock electrons from their orbits around the nuclei of atoms in the sample as they strike it. When this occurs, the electron in the outer orbit of the atom will fall into the shell of the missing electron. 

Outer shell electrons possess more energy than inner shell electrons, so the relocated electron has an excess of energy that is released as an X-ray fluorescence photon. The sample’s composition produces this particular fluorescence. 

This spectrum is collected by the detector and converted into electrical impulses proportional to the energies of the X-rays in the spectrum of the sample. 

By counting the pulses in the emitted spectrum, we can identify the presence and concentration of the component(s) of interest within the sample. 

Each element has its own distinct X-ray signature, so we can determine which part of the spectrum is associated with that component.

Contact PAS for expert guidance about the Thermo Fisher Scientific Niton DXL or the Niton XL2, and which will best suit your gold-buying needs.

Scrap Metal Recycling – The Sorting Process Made Easy

Scrap Metal Recycling – The Sorting Process Made Easy

There’s never been a more critical time to ensure accuracy and transparency when it comes to metal sorting in your scrap metal recycling process.

And, with ever-increasing competition and supplier demands, industry leaders know maintaining profitability in a volatile metal-pricing environment is crucial.

Regardless of your application, there is an industry-leading handheld XRF or LIBs analyser available to do the job, ensuring the alloy grade and composition meet your specifications.

In both cases, these methods of metal testing are more effective, accurate and efficient than a variety of other more labour intensive, time-consuming and destructive methods.

To learn more about what XRF is and how it works, read the XRF Technology ebook from Thermo Scientific.

Scrap Metal Recycling Is Big Business

Australia generates 40% of its waste from construction and demolition. Scrap metal is included in this amount.

Recycling metal is important because it reduces the amount of:

· Waste sent to landfill

· Mining needed for new metals

· Air and water pollution

· Energy needed to create new products (versus from virgin materials)

Stainless steel, copper, bronze, brass, aluminum and iron can be recycled. The metals in your old appliances, cars, planes and building materials can be recycled to make new ones. The metal in many food and drink cans is usually already 100% recycled.

Facts about Metal, Aluminium & Steel

350,000 aluminium cans are produced every minute1 tonne of recycled steel saves 1,131kg of iron ore, 633kg of coal and 54kg of limestone95% energy saved creating cans from recycled aluminium

Source: SUEZ

The price of scrap copper per kilo is worth the most money. This is due to the amount that’s used in our society and the cost of mining and processing copper into products such as pipes and wire. Here’s a rough guide to various scrap metal prices. Please note, this is a guide only, and prices can fluctuate quite wildly.

The Easy Way To Identify And Sort Scrap Metal

Globalised trade in scrap metal, alloy stock and finished products has resulted in increased costs of alloy mix-ups for suppliers, distributors and industrial consumers. 

So, in order to ensure quality, safety and regulatory compliance, the exact chemical composition of scrap, including the existence of contaminants or hazardous elements, must be determined.

Scrap metal recyclers use handheld PXRF to:

  • Rapidly sort mixed metals
  • Positively identify numerous alloys, including light alloys
  • Guarantee the quality of their product to their customers

What is metal waste?

We use metals in many everyday products and applications. Vehicles, trucks, trains, train tracks, ships, aeroplanes, white goods, cutlery, pots and pans all contain metal.

Metals can be classified as “ferrous” and “non-ferrous”. Common ferrous metals include carbon steel, alloy steel, wrought iron, and cast iron. Non-ferrous metals include aluminum, copper, lead, zinc, and tin.

The Process of Metal Recycling

The process of metal recycling involves these stages:

  • The metal is collected by scrapyards and sorted into bins. Non-ferrous metals that contain steel or iron are considered scrap steel.
  • Stainless steel and other valuable nickel alloys are sorted into their specific alloy grade to increase value.
  • Metal recycling centres sell their scrap to super collectors, which shred it and then melt it in furnaces at high temperatures to produce blocks, ingots, or sheets to make metal products.

In spite of the energy costs involved in recycling scrap metal, the energy needed is less than that needed to make it out of raw materials.

Recycling cans, for instance, can save 75% more energy than producing steel from raw materials. 

With around 90% of steel products being recycled in Australia, every tonne of recycled steel is equivalent to 1130 kilograms of iron ore, more than 630 kilograms of coal and over 54 kilograms of limestone being saved from being mined.

How PAS Products Slash Your Sorting Time

Niton XRF analysers are the ideal tool for screening incoming scrap, as well as providing quick, non-destructive chemistry and grade verification of chill castings and final product.

The Katana KT-100 LIBs analyser offers superior light element identification in metal and alloy applications to ensure profitability and product quality, without the radiation aspect of XRF. 

The Niton Apollo analyser offers carbon analysis in the field for specific material sorting

Elements such as magnesium (Mg) and aluminium (Al) can now be accurately identified in 1-2 seconds.

PAS is an accredited supplier of both the Niton XRF and the Katana LIBs ranges for positive material identification (PMI) and non-destructive testing (NDT). 

We provide expertise at every stage of the purchasing process, with training, compliance, factory guaranteed service and product support.

Although some alloys are detectable via either instrument, clear differences and expert advice will determine which instrument is best for you. Contact us today for advice.

Explore our full range.

Sorting scrap metal in the recycling industry has advanced. To boost your workplace efficiency and accuracy, contact PAS for the best product to suit your needs.

Scrap Metal Recycling And Waste Links

Australian Council Of Recycling

National Waste Recycling Industry Association (NWRIC)

Australian Metal Recycling Industry Association Victoria

Waste Contractors & Recyclers Association of NSW (WCRA)

NSW Police Force: Scrap Metal Industry 

Scrap Metal Industry Public Register

NSW Legislation: Scrap Metal Industry Act

ABLIS: Registration of a Scrap Metal Dealer – New South Wales

EPA: Waste Avoidance and Resource Recovery Strategy

NSW Fair Trading: Scrap metal exemption certificate

NSW Parliament: Scrap Metal Industry Bill 2016

Asbestos Resources And Information Guide

Asbestos Resources And Information Guide

Finding asbestos at a site creates not only a potentially dangerous situation for workers, but it leads to stoppages that cost businesses money while the area is tested and cleared.

We have compiled a very useful list of resources on asbestos, which we refer to in our detection and sampling process, including links to all the important Australian government bodies that monitor and regulate asbestos issues in the community. 

We are – as are many in the industry – working diligently to stay ahead of any potential risks associated with asbestos. 

Asbestos Information And Links 

Since 2013, the Asbestos Safety and Eradication Agency has been overseeing national initiatives to raise awareness of asbestos-containing materials, and to provide management, removal and disposal of asbestos in an effective and safe manner. It provides advice and assistance, but does not enforce the law.

 

The Asbestos Disease Research Institute (ADRI) came to be in 2009 to address emerging public health concerns surrounding asbestos-related diseases. ADRI studies asbestos-related diseases in terms of pre-clinical (basic), clinical, and epidemiological methods, leading to improved methods of prevention, diagnostic, therapeutic procedures, and treatment strategies. As part of its national work on prevention and public health, the organisation provides support for patients, advocates for public policy, and raises awareness about preventing future exposure to asbestos.

 

In 1945, all states and the Federal Government attended a conference on testing services coordination that led to NATA being formed two years later. As Australia’s foremost laboratory accreditation body, it provides a national testing service that covers all technical, industrial, and geographical areas of the country. So NATA enjoys a leading position on the international stage as an authority in ensuring technical standards in Australia.

 

The Australian Asbestos Network was developed through a project funded by the National Health and Medical Research Council that began in 2006. It aims to develop an online resource for people in the community who would like to learn more about asbestos; its history, current impacts on Australia and how they can all help minimise its harmful effects on our health and well-being.

 

The NSW Government is required under the Home Building Act 1989 to maintain a register of residential properties that contain loose-fill asbestos insulation. The register is known as the Loose-fill Asbestos Insulation Register (LFAI Register). The LFAI is in place in order to “provide safety, increased certainty and support to the community”, according to a statement from NSW Fair Trading.

 

The NSW Environment Protection Authority (EPA) is the primary environmental regulator for New South Wales. It partners with business, government and the community to reduce pollution and waste, protect human health, and prevent degradation of the environment. It encourages businesses to make sure their activities do not harm the environment and human health by: issuing environment protection licences; monitoring compliance; ordering the clean-up of pollution and imposing fines or prosecuting organisations and individuals who break the law. It also responds to and manages pollution incidents involving hazardous materials such as asbestos (in collaboration with other government agencies).

 

You can find asbestos disposal facilities using this search tool provided by The Asbestos Safety and Eradication Agency. Always call or contact your disposal facility prior to transporting any asbestos waste. Many facilities will only accept and handle asbestos waste at certain times, in order to maximise landfill efficiency and minimise health risks. Most facilities also have procedures (for example, asbestos waste wrapping requirements) that people disposing will need to follow carefully, to ensure asbestos waste is accepted by the facility.

 

The NSW Asbestos Coordination Committee (NACC) works to improve the management, monitoring and response to asbestos issues in NSW through collaboration and programs. A number of NSW state agencies and other organisations collaborate through the NACC.

 

The SWA was established in 2008 by the Australian government to develop national policies on occupational safety and health. Workers’ compensation and WHS policies are developed through this agency. It is responsible for developing and evaluating national policies and strategies; developing and evaluating model WHS legislative frameworks; conducting research; and collecting, analysing and reporting data. The national policy body has no regulating authority over workplace safety laws. WHS laws are regulated and enforced by the Commonwealth and the states and territories. If you manage or control a workplace, you are responsible for ensuring an asbestos register is prepared, maintained, and accessible.

 

As well as developing and delivering policies and programs, the Department advises the Australian Government on health issues. Assuring better health for all Australians is one of its goals. It provides valuable information to all Australians regarding asbestos health risks. It is the 100th anniversary of the Department of Health this year. It was created in 1921 after a pandemic, and now it is dealing with a COVID-19 pandemic in 2021.

 

The WHS Act aims to protect the health and safety of workers and workplaces by eliminating or minimising hazards and risks, in order to provide maximum protection against hazards and risks. Compliance and enforcement guidelines support the WHS legislation.


For help with non-destructive asbestos screening, detection and identification, Portable Analytical Solutions has an effective, real-time and reliable solution. Contact us today.

Portable XRFs – the big guns in mining and exploration

Portable XRFs – The Big Guns In Mining And Exploration

Any mining company or contractor should conduct a due diligence phase prior to a property acquisition or before digging into a site.

Similarly, logging drill core to determine its geochemistry at the feasibility study stage makes sense to avoid any surprises further into the project.

But these phases take up valuable time, resources and money.

Thankfully, the mining and exploration industries continue to develop, and we now have specialised hand-held X-Ray Fluorescence (XRF) devices to make determining the geochemistry of rock and soil samples easier and faster.

There are a few Portable XRFs (PXRFs) on the market, but some are better than others.

Meet The Niton XL5 Plus

As a geochemistry tool, there’s something special about the Thermo Fisher Niton XL5 Plus

Aside from its striking colour and sleek design, it’s one of the best handheld elemental XRF analysers out there to support your field-based decision making or to offer enhancement to any multi-element geochemical data plotting.

Combined with the right sample handling and protocols, it can save time, lower your costs and add value to your mineral exploration and mining settings when it is used in a fit-for-purpose application.

Portable XRFs - the big guns in mining and exploration 1

Benefits of portable XRF analyser

  • Quantify up to 41 elements simultaneously
  • Most analysis is performed within seconds – this increases your productivity
  • You have the performance of a lab-grade EDXRF spectrometer in the palm of your hand
  • It’s Intuitive, easy-to-operate interface
    WiFi, Bluetooth and GPS – built-in
  • Hot-swappable battery, can be charged by UPS trickle-charge or 12V DC
  • Has an internal system check standard
  • Accessories built for the industry
  • Backed by local support, knowledge, service
  • Large, installed customer database

Features of portable XRF analyser

  • Easy to use
  • Lightweight
  • Cost-effective
  • Nondestructive
  • Accurate results
  • Instant results
  • Can be used on-site

Chemical/ Elemental analysis is achieved through Thermo Fisher Scientific’s range of Niton hand-held XRF analysers.
Mining drlling

Why You Need This For Mining And Exploration

There are many mining companies – across nickel, iron ore, uranium, gold and base metal mines – already using portable XRF analysers in their day-to-day processes as a screening tool.

They do this because they know it saves them valuable time and money.

Broad Mining Applications Of A Portable XRF

  • Mineral exploration
  • Environmental and mine closure
  • Mineral processing and geometallurgy
  • Mining and grade control

Let’s break this down, and dig deeper into some more specific uses.

Soil Sampling

This is usually one of the first stages of any exploration project.

Grids are often set up where samples are collected on a grid spacing, so with the PXRF you can easily take samples, sieve it, analyse it and move on to the next sample, getting through these large grids much faster than with traditional methods.

You can store the data in the analyser or send it to the field camp or lab for further analysis.

Real-time analysis with handheld XRF analysers is also a good way to prequalify samples for off-site lab analysis to ensure only the best samples are evaluated, saving you money.

XRF analysers can be used for in-quarry exploration and evaluating the composition of raw materials such as phosphate, sulphides, potash, gypsum and limestone for industrial use.

Soil testing

Real-Time Field Mapping

When you’re at ground level with your geopick, rock sampling, you can use the PXRF to test those rock-chip samples immediately to find out if certain elements are present.

You can then use the onboard GPS with the analyser and start creating contour maps of concentrations of the particular elements you are searching for before you even start to dig in an area.

PXRF analysers quickly deliver exploration data for quantitative geochemical analysis of metal concentrations for all types of mine mapping.

Again, you can then send that data to the field camp or the laboratory for easy collaboration and informed decisions.

The PXRF can help you map dangerous or previously inaccessible sites.

Portable handheld analysers can be operated virtually anywhere onsite and easily accommodate a wide variation of samples.

In The Drilling Phase

From a reverse circulation drill rig, your sample return can get you a read on any pathfinders or heat values.

This helps you decide whether to keep drilling or to stop drilling in an area.

The beauty of these samples is they are very homogenous.

Samples can be pre-screened with XL5 and you only need to send samples that have got known mineralisation back to the lab for testing. This can save you substantially, considering the lab costs involved.

Oil And Gas Exploration

XRF analysers are valuable for upstream exploration and production, offering rapid, onsite chemical analysis of rocks, cuttings, and cores that can be used for identifying formations and determining mineral composition of the rock.

Users can infer mineralogical properties favourable to oil and gas production from data collected in real time.

This provides qualitative and quantitative analysis for process and quality control, and rapid inspection and analysis ensures product chemistry specifications are met.

Portable options are lightweight and easy to use, delivering non-destructive analysis and lab-quality results in the field.

Mining exploration

What is geochemistry and why is it important?

Geology studies the structure of the Earth, whereas geochemistry is concerned with the chemical processes that occur in the formation of rocks and minerals.

Geochemistry is vital to our understanding of processes that produce economic concentrations of minerals whether by hydrothermal, magmatic, metamorphic, hydraulic (both surficial and subterranean) or weathering agents, or all of these.

Exploration geochemistry is a spatial sampling and analysis methodology used when searching for mineral resources and routinely for petroleum.

Geochemistry can also help us identify some of today’s most important environmental problems, such as global warming, ozone depletion, and soil and water pollution.

What Makes The Niton XL5 Plus So Special?

The Niton XL5 Plus offers the latest in technology, being the only 5 Watt system available, providing best limits of detection in the range. Plus it’s smaller, lighter, and even more ergonomic.

With it you can obtain geochemical data in seconds and in situ. It’s built for the most demanding analytical applications.

The XL5 Plus allows the x-ray source and fluorescence detector to be closer to the sample, improving limits of detection and shortening measurement time, especially for light elements.

As well as metals, the XL5 Plus measures the elemental composition of scale, sludge, oil, powders and slurries.

Other Key Features Of The XL5 Plus

  • Vivid navigation; customisable user profiles
  • Micro and macro cameras
  • Advanced analytical performance
  • Smaller, faster, lighter
  • Segment leading light element performance
  • Customisable for individual applications

A special mining mode lets users determine the concentration of elements from Mg to U in various types of geochemical materials.

How XRF Technology Works

XRF occurs when a fluorescent (or secondary) x-ray is emitted from a sample that is being excited by a primary x-ray source.

The detector is responsible for determining the elements present in a given sample by accurately and nondestructively “reading” the fluorescent x-rays.

When the characteristic x-rays enter the detector, their electromagnetic energies are converted to electrical pulses. These pulses are then sorted into element channels in a Digital Signal Processor (DSP).

Next, the “counts” from each element are sent to the microprocessor, which contains the algorithms for calculating the concentration of each element from the count rate data.

This makes it substantially advantageous in mining operations, because it provides immediate feedback and allows for quick decision making, including:

  • Whether to stop or continue drilling
  • When to make equipment relocation decisions
  • Where to focus on the grid
  • When to select a sample for laboratory analysis

Thinking about implementing XRF technology to your mining analysis or inspection process? Speak to our team of specialists at Portable Analytical Solutions to find out how the Niton XL5 Plus is best suited to you or your company’s needs.

Portable Analytical Solutions (PAS) offers multiple analysis options for your mining and exploration projects.

Related Resources:

Applications Of PXRF In The Field
XRF (X-Ray Fluorescence) Further Explained
Eureka! Portable XRF And Gold Exploration

Guide to PXRF Instruments

Guide to PXRF Instruments

 

Portable Analytical Solutions

XL2 & XL5 PXRF Instruments

After you’ve identified that a Portable XRF (PXRF)  instrument will suit your analysing needs, the next question is which instrument will suit your needs best.

This article outlines the details of each PXRF instrument, to help you make a more informed decision.

 

Niton XL2 PXRF

The XL2 Portable XRF Analyser provides immediate, nondestructive elemental analysis for a wide range of applications. It can detect alloy materials from titanium to nickel, as well as tramp and trace element analysis. The XL2’s standard analytical range spans up to 30 elements from sulphur to uranium.

This instrument is lightweight, rugged and built for harsh conditions:

  • Sealed against moisture and dust
  • Ergonomically designed
  • Daylight-readable icons on colour, touch-screen display

Applications for the Niton XL2

  • General Metal
  • Gold
  • Ore
  • Lead Contamination
  • RoHS
  • Alloy
  • Mine Management
  • Waste
  • Hazmat
XL2 Precious Metal Analyser

Niton XL2 Plus PXRF

This is a tough, powerful, handheld instrument for identifying metal alloys and mineral ores easily in the field. It can identify Niobium in Titanium alloys down to 200 ppm and more generally, elements from Magnesium to Uranium, down to 20 ppm in common alloys.

Applications for the Niton XL2 PLus

  • Verification of metals and alloys in manufacturing operations
  • Quality Assurance testing for positive material identification
  • Handheld point-and-shoot sorting at scrap recycling operations
  • Precious metal assay of bullion and jewellery
Guide to PXRF Instruments 2

Niton XL3 PXRF

The Niton XL3 is an advanced Portable XRF analyser with sophisticated models designed for specific industry applications. A tilting, colour, touch-screen display allows easy viewing of sample results under any condition.

The optional integrated camera allows users to locate, view, and store the analysis image and the test results for later reference.

The handheld Niton XL3t GOLDD+ for light element (Mg-S) analysis offers the lowest limits of detection and fastest measurement times.

  • Integrated GPS on some models
  • Rapid accurate decisions on-site
  • Low limits of detection
  • Optimisation for light elements in some models

Applications for the Niton XL3

  • Geochemical
  • Mining and Exploration
  • Manufacturing
  • Engineering
  • PMI
  • Scrap Metal Recycling
Niton™ XL3 Analyser Handheld

Niton XL5 PXRF

This top range model has the best limits of detection in the range, and is smaller, lighter and even more ergonomic.

The XL5 allows the x-ray source and fluorescence detector to be closer to the sample, improving limits of detection and shortening measurement time, especially for light elements.

As well as metals, the XL5 measures the elemental composition of scale, sludge, oil, powders and slurries.

  • Vivid navigation; customisable user profiles
  • Micro and macro cameras
  • Advanced analytical performance
  • Lightweight ergonomic design.

Utilise Mining Mode to gather accurate, real time geochemical data and maximise overall productivity:

Mining Mode enables users to determine the concentration of elements from Mg to U in various types of geochemical materials. Reduce overheads by implementing the Niton XL5 for cost effective oil and gas exploration, mineral discovery and mining operations.

Applications of the Niton XL5

  • Alloys
  • Metal Fabrication
  • Scrap Metal
  • Mining & Exploration
Niton XL5 PXRF

Niton DXL Portable Benchtop XRF

Niton gold spectrometers quickly provide the exact karat weight and percentages of all elements within an item – easily identifying non-standard, under-karated, and even advanced counterfeit gold with fire assay-comparable accuracy.

With an innovative colour touch-screen display and touch-screen keyboard, the DXL analyses precious metals with speed and accuracy. Its features include:

  • Improved intuitive interface
  • CCD Camera
  • Large sample chamber with a back window for customer view
  • Optional small spot for the isolation of small components
  • Handles small pieces or multiple items simultaneously
  • Non-destructive and simple to operate

With the Niton DXL you can:

  • Simultaneously measure the content of all gold and precious metals without manually changing your calibration based on the metal you’re analysing 
  • Precisely determine the presence and concentration of other trace alloying elements including lead
  • Eliminate the toxicity associated with nitric acid test methods
  • Capture images and focus in on small areas using our integrated cameral and small spot feature (depends on model)

Key Applications for the Niton DXL

  • Gold Buying
  • Jewellers
  • Secondhand Dealers
  • Collectors
Niton DXL

To discuss your PXRF requirements and understand which instrument is best for you, please get in touch and chat with one of our experts.

Applications of PXRF in the field

Applications of PXRF in the Field

 

Portable Analytical Solutions

PXRF In The Field

Handheld and portable x-ray fluorescence (XRF) analysers have many applications for elemental analysis

Below is a summary from the Thermo Scientific XRF Technology ebook, of a few industries putting XRF technology to work in daily operations.

 

Metal Alloy Analysis, Identification and Testing

Scrap Metal Recycling

Globalised trade in scrap metal, alloy stock and finished products has resulted in increased costs of alloy mix-ups to suppliers, distributors and industrial consumers. So in order to ensure quality, safety and regulatory compliance, the exact chemical composition of scrap, including the existence of contaminants or hazardous elements, must be determined.

Scrap metal recyclers use handheld PXRF to:

  • Rapidly sort mixed metals
  • Positively identify numerous alloys, including light alloys
  • Guarantee the quality of their product to their customers

Positive Material Identification (PMI)

If critical parts of machinery are made from the wrong metal alloy, or a material that does not meet specifications, it can lead to premature and potentially catastrophic part failures, and result in accidents.

Positive Material Identification (PMI) is the process of inspecting and analysing individual component materials. Portable XRF analysers can perform PMI of:

  • Incoming raw materials
  • Work in progress
  • Final quality assurance of finished parts

Precious Metals & Jewellery Analysis 

Portable XRF analysers are ideal for jewellers and pawn shops to test the purity and composition of precious metals. XRF quickly provides the exact percentages of all elements within an item, easily identifying:

  • Karat and concentration of Gold
  • Non-standard materials
  • Under-karated materials
  • Sophisticated counterfeit precious metals that acid testing is incapable of differentiating 

Metal Fabrication; Quality Assurance & Control

In the metal fabrication and manufacturing process, the potential for material mix-ups and the need for traceability are a concern at every step. Material verification for alloy quality assurance (QA) and quality control (QC) are critical to product safety.

Prior to product manufacture, Handheld XRF is used for:

  • Inspection of incoming raw material to verify alloy grade and composition
  • Final quality inspection before finished parts are sent to the customer
  • Assurance that the incoming raw materials and outgoing finished parts meet the expected engineering requirements

 

Mining/Geology

Portable XRF analysers are perfect for the mining/geology industries, as they can be operated virtually anywhere on site and easily accommodate a wide variation of samples, with little or no sample preparation.

This makes them substantially advantageous in mining operations, because it provides immediate feedback and allows for quick decision making, including:

  • Whether to stop or continue drilling
  • When to make equipment relocation decisions
  • Where to focus on the grid
  • When to select a sample for laboratory analysis

The real-time analysis of a handheld XRF also prequalifies samples for off-site lab analysis, which ensures only the best samples are evaluated.

Below are specific applications of the PXRF within mining/geology:

Exploration

XRF analysers quickly deliver exploration data for quantitative geochemical analysis of metal concentrations for mine mapping. 

Production and Mineral Processing

Fast, laboratory-grade sample analysis data for process control, quality assurance and other operational decisions.

Mine Site Analysis and Extraction

Send data to quarry laboratory and operations management personnel for easy collaboration and informed decisions. 

Industrial Minerals Evaluation

In-quarry exploration and evaluating the composition of raw materials such as phosphate, potash, gypsum and limestone for industrial use.

Oil & Gas Exploration

Valuable for upstream exploration and production, offering rapid, on-site chemical analysis of rocks, cuttings, and cores that can be used for identifying formations and determining mineral composition of the rock. Users can infer mineralogical properties favourable to oil and gas production from data collected in real time. 

 

Toys and Consumer Goods

Consumer goods such as toys, apparel, jewellery, cosmetics and furniture are now routinely screened using XRF analysers. This protocol largely came as a result of The Consumer Product Safety Improvement Act (CPSIA) of 2008, which was signed into law to combat the alarming amounts of lead found in children’s toys.

Both the U.S. Consumer Product Safety Commission (CPSC) and Europe’s PROSAFE (Product Safety) use XRF analysers for screening toys and consumer goods.

Worldwide Restriction of Hazardous Substances (RoHS) regulations continue to impact the manufacturers of electrical and electronic goods and their supply chains…as do the halogen-free initiatives. Handheld XRF analysers help enforcement agencies screen goods for:

  • Mercury
  • Lead
  • Other harmful materials

 

Environmental Analysis / Remediation

PXRF analysers provide on-site analysis of environmental contaminants, from hazardous site modeling and risk assessment to on-site contaminant screening and lead paint abatement.

Lead Paint Inspection

Government regulations, such as the U.S. EPA-issued Renovation, Repair and Painting (RRP) Rule, mandate lead-safe work practices for contractors performing renovations. XRF analysers provide conclusive results for lead in samples as referred to in AS/NZS 4361.2:2017associated with the abatement and control of lead-based paint for compliance with RRP and other state and federal requirements.

Soil

Industrial and agricultural sites can become contaminated with lead, arsenic, cadmium, chromium, and other toxic metals. The first remedial step in treating these hazardous areas is accurately assessing the scope and extent of the pollutants in the soil.

XRF analysers provide lab-grade performance in the field, permitting surgical delineation of contamination boundaries while in full compliance with US EPA Method 6200. 

 

Art and Archaeometry

PXRF analysers can collect quantitative elemental data from archaeological samples. This data can be used to:

  • Match pigments and other materials for restoration
  • Help identify how objects have been preserved in the past
  • How to better conserve them for the future
  • Glean important clues to the age of petroglyphs
  • Identify alloys and other materials
  • Help authenticate a variety of art and artifacts

The Native American Graves Protection and Repatriation Act (NAGPRA) requires that Native American cultural artifacts be returned to lineal descendants or affiliated tribes. XRF technology can be used to evaluate these objects for the presence of arsenic or other harmful preservatives before they are returned.

As you can see, the portable XRF devices are incredibly versatile and have a broad range of applications. This is thanks to the software, which can be interchanged within the same device.

To find out more and read the full XRF Technology ebook from Thermo Scientific, click on the button below:

XRF (X-Ray Fluorescence) Explained

XRF (X-Ray Fluorescence) Explained

 

Portable Analytical Solutions

XRF Explained

XRF (X-ray Fluorescence) is a non-destructive analytical technique used to determine the chemical composition of materials.

XRF (X-Ray Fluorescence) has a broad range of applications across many industries, so to understand if and how it might work within your field, let’s take a closer look at what it is.

Specifically, in this article we will discuss:

  • What XRF is
  • How it works
  • Strengths & limitations of XRF

What is an X-Ray

Quite simply, X-rays are light waves that we cannot see. They have a very short wavelength, which corresponds to a very high energy, meaning they can pass through most objects.

X-Ray Properties:

  • Propagated in straight lines at speed of light
  • Absorbed while passing through matter, depending on composition and density of the substance
  • Emitted with energies characteristic of the elements present
  • Affect the electrical properties of liquids and solids
  • Cause biological reactions such as cell damage or genetic mutation
  • Darken photographic plates
  • Ionize gases

What is X-Ray Fluorescence (XRF)?

XRF occurs when a fluorescent (or secondary) x-ray is emitted from a sample that is being excited by a primary x-ray source. XRF is an excellent technology for qualitative and quantitative analysis of material composition, because the fluorescence is unique to the elemental composition of the sample – hence why it is so versatile and has a wide range of applications.

The X-Ray Fluorescence Process

A solid or liquid sample is irradiated with high energy x-rays from a controlled x-ray tube.

 

When an atom in the sample is struck with an x-ray of sufficient energy (greater than the atom’s K or L shell binding energy), an electron from one of the atom’s inner orbital shells is dislodged. 

 

The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom’s higher energy orbital shells.

 

The electron drops to the lower energy state by releasing a fluorescent x-ray. The energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron. The measurement of this energy is the basis of XRF analysis.

X-Ray Fluorescence Process

What are Portable XRF (PXRF) Analysers?

Handheld and portable XRF analysers provide instant analysis in any field environment, thanks to their lightweight design and ease of use. They are routinely used for rapid quality control inspection and analysis to ensure product chemistry specifications are met, and have become the standard for non-destructive elemental analysis in a wide range of applications.

Now on their seventh generation, portable XRF technology has become increasingly sophisticated, with new capabilities including smaller size, increased speed, better performance and greater ease of use.

Today’s portable XRF analysers are miniaturised and designed for ultra high speed with lab-quality performance.

 

How PXRF Analysers Detect X-Rays

The detector is an important part of all XRF instrumentation, since it is responsible for determining the elements present in a given sample by accurately and nondestructively “reading” the fluorescent x-rays.

When the characteristic x-rays enter the detector, their electromagnetic energies are converted to electrical pulses. These pulses are then sorted into element channels in a Digital Signal Processor (DSP).

Next, the “counts” from each element are sent to the microprocessor, which contains the algorithms for calculating the concentration of each element from the count rate data.

There are two main types of detectors in handheld XRF technology:

Silicon Drift Detectors (SDDs)

SDDs are high-resolution detectors that can be used in high count-rate applications. The larger the active area of the detector, the more efficiently it can gather and process x-ray counts.

XRF instrumentation employing SDD can be used in applications that require extreme sensitivity, such as the detection of tramp elements that can degrade the performance of alloys.

Residual elements can be measured with a confidence once only possible in the lab. SDD’s are also required to analyse light elements such as Magnesium (Mg), Aluminium (Al), Silicon (Si), Phosphorus (P) and Sulfur (S).

The introduction of SDDs into PXRF instruments has produced significant performance improvements over traditional XRF capabilities.

PIN Detectors

This is a high-performance, high-resolution technology conventionally used in handheld and portable XRF instrumentation. It is appropriate for numerous industry applications.

PIN Detectors measure the fluorescence radiation emitted from the sample after it has been irradiated, usually by an x-ray tube (occasionally by a radioactive source). 

Instruments with Silicon PIN detectors are sensitive to X-rays that are higher on the periodic table than Sulfur (S) and tend to be less expensive than instruments with Silicon Drift Detectors. 

 

Limitations of Handheld XRF

The fluorescent x-rays from lighter elements (Z<18) are less energetic and are greatly attenuated as the x-rays pass through air, meaning analysis of these elements with handheld XRF can be challenging.

Spectral Effects

Some elements have lines that overlap other elements, which can make detection challenging – especially when two overlapping elements are present.

Fortunately the software will strip out and correct most of these overlaps (as long as the interfering element is in the mode being used).

Matrix Effects

The matrix refers to any other element present in the sample, other than the one element being considered. 

If however you are using a fundamental parameters based calibration with all the necessary elements present, enhancement and absorption effects are typically taken care of in the software.

Enhancement Effects

Some fluorescent x-rays have more energy than the binding energy of other elements present in the sample, so their energy will excite those other elements. These elements will give a greater signal return to the detector, therefore “enhancing” the reading.

Absorption Effects

If the fluorescent x-ray is scattered or absorbed by other elements present in the sample, it will not reach the detector so the signal is weaker.

Sample Effects

XRF is a surface analysis technique, so if the surface of the material being analysed is not representative of the entire sample (particle size, inhomogeneity, surface contamination etc) the results will be skewed.

 

Strengths of Portable Handheld XRF Analysers

  • Lightweight
  • Easy to use
  • Cost-effective
  • Nondestructive
  • Accurate results
  • Instant results
  • Portable
  • Used onsite

If you’d like to discuss your PXRF requirements, please get in touch and chat with one of our experts.

New distribution partnership with LemnaTec GmbH

New distribution partnership with LemnaTec GmbH

Portable Analytical Solutions is pleased to announce a new distribution partnership with LemnaTec GmbH, a global specialist for digital phenotyping and digital seed testing.

Juergen Kreis, Managing Director of LemnaTec explains “With this move, LemnaTec broadens its presence in the South Pacific and strengthens support for its customers in Australia, New Zealand and the Pacific Island regions. With our growing range of phenotyping solutions, customer proximity and consulting competence are of paramount importance. With PAS, we have found an experienced partner that brings added value to our local customers through its excellent technical understanding as well as its wide range of complementary products.”

Paul Martin, our very own Managing Director at PAS, says “With the growing market space of Plant Phenotyping in our region PAS is excited to partner with LemnaTec to bring great products to our customers and support the current LemnaTec customers in the region. Supplying complete solutions to our customers is important to PAS, and we see a great future ahead with the LemnaTec product portfolio.”

For over 11 years, Portable Analytical Solutions has proudly supplied scientific product solutions to industrial, governmental, education, research and science institutions throughout Australia, New Zealand and the South Pacific Islands. PAS focus is on the supply of Lab to Field Solutions to improve application development, implementation and support for our customers and their products. For further information, please contact us.

Airborne Hyperspectral Imaging Solutions

AERIAL HYPERSPECTRAL IMAGING SOLUTIONS

Created By Analytik, United kingdom

Watch the video to find out more about aerial hyperspectral imaging.

To appreciate the significance of aerial hyperspectral imaging, Analytik has created an informative video to understand what hyperspectral imaging is, and how it works.

Aerial Hyperspectral Imaging (or Remote Sensing) collects and process information across different bands of the electromagnetic spectrum via an aerial vehicle, such as a drone. Hyperspectral Imaging Sensors collect spectral information from a large area (such as a forest) as a set of images, allowing the identification of objects and materials through their individual characteristics (or “spectral fingerprint”).

The electromagnetic spectrum consists of multiple bands of electromagnetic radiation which is separated by size and frequency.

Want to learn more? Continue watching the video provided by Analytik to understand more about hyperspectral imaging.

HeadWall Products

Aerial Solution example

 VNIR-SWIR CO-ALIGNED + INTERNAL DATA STORAGE + GPS-IMU

Airborne Hyperspectral Imaging Solutions 5

Headwall’s Co-Aligned Dual VNIR-SWIR sensor package with co-aligned pixels for superb imaging performance from 400-2500nm.

Key Benefits of the Hyperspec VNIR – SWIR Co-Aligned from HeadWall Photonics.

  • Superb imaging performance
  • Wideband coverage
  • Pixel co-alignment through software
  • Small form-factor, lightweight
  • Robust and environmentally rugged
  • Aberration-corrected
  • High spatial and spectral resolution
  • Wide field-of-view

View the quick start for aerial Systems – witness application examples

Headwall has released a serious of quick start videos for Aerial Systems demonstrating application examples and how to use the Software & Systems. Simply check them out below……

Quick Start UAV-Nano Part 01: Unboxing

Quick Start UAV-Nano Part 02: Software Pre Flight Preparation

Quick Start UAV-Nano Part 03: Flight and Data Download

Quick Start UAV-Nano Part 04A: Data Post Processing

Quick Start UAV Nano Part 04B: Post-Processing of High-Performance GPS/IMU Data

Webinars & Demos: Software & Systems

Headwall LiDAR Tools Tutorial with Examples of LAS DEM HSI-LiDAR Fusion

Headwall Hyperspectral Imaging Seminar at the University of Colorado – Boulder