Guide to PXRF Instruments

Guide to PXRF Instruments

 

Portable Analytical Solutions

XL2 & XL5 PXRF Instruments

After you’ve identified that a Portable XRF (PXRF)  instrument will suit your analysing needs, the next question is which instrument will suit your needs best.

This article outlines the details of each PXRF instrument, to help you make a more informed decision.

 

Niton XL2 PXRF

The XL2 Portable XRF Analyser provides immediate, nondestructive elemental analysis for a wide range of applications. It can detect alloy materials from titanium to nickel, as well as tramp and trace element analysis. The XL2’s standard analytical range spans up to 30 elements from sulphur to uranium.

This instrument is lightweight, rugged and built for harsh conditions:

  • Sealed against moisture and dust
  • Ergonomically designed
  • Daylight-readable icons on colour, touch-screen display

Applications for the Niton XL2

  • General Metal
  • Gold
  • Ore
  • Lead Contamination
  • RoHS
  • Alloy
  • Mine Management
  • Waste
  • Hazmat

Niton XL2 Plus PXRF

This is a tough, powerful, handheld instrument for identifying metal alloys and mineral ores easily in the field. It can identify Niobium in Titanium alloys down to 200 ppm and more generally, elements from Magnesium to Uranium, down to 20 ppm in common alloys.

Applications for the Niton XL2 PLus

  • Verification of metals and alloys in manufacturing operations
  • Quality Assurance testing for positive material identification
  • Handheld point-and-shoot sorting at scrap recycling operations
  • Precious metal assay of bullion and jewellery

Niton XL3 PXRF

The Niton XL3 is an advanced Portable XRF analyser with sophisticated models designed for specific industry applications. A tilting, colour, touch-screen display allows easy viewing of sample results under any condition.

The optional integrated camera allows users to locate, view, and store the analysis image and the test results for later reference.

The handheld Niton XL3t GOLDD+ for light element (Mg-S) analysis offers the lowest limits of detection and fastest measurement times.

  • Integrated GPS on some models
  • Rapid accurate decisions on-site
  • Low limits of detection
  • Optimisation for light elements in some models

Applications for the Niton XL3

  • Geochemical
  • Mining and Exploration
  • Manufacturing
  • Engineering
  • PMI
  • Scrap Metal Recycling
Niton™ XL3 Analyser Handheld

Niton XL5 PXRF

This top range model has the best limits of detection in the range, and is smaller, lighter and even more ergonomic.

The XL5 allows the x-ray source and fluorescence detector to be closer to the sample, improving limits of detection and shortening measurement time, especially for light elements.

As well as metals, the XL5 measures the elemental composition of scale, sludge, oil, powders and slurries.

  • Vivid navigation; customisable user profiles
  • Micro and macro cameras
  • Advanced analytical performance
  • Lightweight ergonomic design.

Utilise Mining Mode to gather accurate, real time geochemical data and maximise overall productivity:

Mining Mode enables users to determine the concentration of elements from Mg to U in various types of geochemical materials. Reduce overheads by implementing the Niton XL5 for cost effective oil and gas exploration, mineral discovery and mining operations.

Applications of the Niton XL5

  • Alloys
  • Metal Fabrication
  • Scrap Metal
  • Mining & Exploration
Niton XL5 PXRF

Niton DXL Portable Benchtop XRF

Niton gold spectrometers quickly provide the exact karat weight and percentages of all elements within an item – easily identifying non-standard, under-karated, and even advanced counterfeit gold with fire assay-comparable accuracy.

With an innovative colour touch-screen display and touch-screen keyboard, the DXL analyses precious metals with speed and accuracy. Its features include:

  • Improved intuitive interface
  • CCD Camera
  • Large sample chamber with a back window for customer view
  • Optional small spot for the isolation of small components
  • Handles small pieces or multiple items simultaneously
  • Non-destructive and simple to operate

With the Niton DXL you can:

  • Simultaneously measure the content of all gold and precious metals without manually changing your calibration based on the metal you’re analysing 
  • Precisely determine the presence and concentration of other trace alloying elements including lead
  • Eliminate the toxicity associated with nitric acid test methods
  • Capture images and focus in on small areas using our integrated cameral and small spot feature (depends on model)

Key Applications for the Niton DXL

  • Gold Buying
  • Jewellers
  • Secondhand Dealers
  • Collectors
Niton DXL

To discuss your PXRF requirements and understand which instrument is best for you, please get in touch and chat with one of our experts.

Applications of PXRF in the field

Applications of PXRF in the Field

 

Portable Analytical Solutions

PXRF In The Field

Handheld and portable x-ray fluorescence (XRF) analysers have many applications for elemental analysis

Below is a summary from the Thermo Scientific XRF Technology ebook, of a few industries putting XRF technology to work in daily operations.

 

Metal Alloy Analysis, Identification and Testing

Scrap Metal Recycling

Globalised trade in scrap metal, alloy stock and finished products has resulted in increased costs of alloy mix-ups to suppliers, distributors and industrial consumers. So in order to ensure quality, safety and regulatory compliance, the exact chemical composition of scrap, including the existence of contaminants or hazardous elements, must be determined.

Scrap metal recyclers use handheld PXRF to:

  • Rapidly sort mixed metals
  • Positively identify numerous alloys, including light alloys
  • Guarantee the quality of their product to their customers

Positive Material Identification (PMI)

If critical parts of machinery are made from the wrong metal alloy, or a material that does not meet specifications, it can lead to premature and potentially catastrophic part failures, and result in accidents.

Positive Material Identification (PMI) is the process of inspecting and analysing individual component materials. Portable XRF analysers can perform PMI of:

  • Incoming raw materials
  • Work in progress
  • Final quality assurance of finished parts

Precious Metals & Jewellery Analysis 

Portable XRF analysers are ideal for jewellers and pawn shops to test the purity and composition of precious metals. XRF quickly provides the exact percentages of all elements within an item, easily identifying:

  • Karat and concentration of Gold
  • Non-standard materials
  • Under-karated materials
  • Sophisticated counterfeit precious metals that acid testing is incapable of differentiating 

Metal Fabrication; Quality Assurance & Control

In the metal fabrication and manufacturing process, the potential for material mix-ups and the need for traceability are a concern at every step. Material verification for alloy quality assurance (QA) and quality control (QC) are critical to product safety.

Prior to product manufacture, Handheld XRF is used for:

  • Inspection of incoming raw material to verify alloy grade and composition
  • Final quality inspection before finished parts are sent to the customer
  • Assurance that the incoming raw materials and outgoing finished parts meet the expected engineering requirements

 

Mining/Geology

Portable XRF analysers are perfect for the mining/geology industries, as they can be operated virtually anywhere on site and easily accommodate a wide variation of samples, with little or no sample preparation.

This makes them substantially advantageous in mining operations, because it provides immediate feedback and allows for quick decision making, including:

  • Whether to stop or continue drilling
  • When to make equipment relocation decisions
  • Where to focus on the grid
  • When to select a sample for laboratory analysis

The real-time analysis of a handheld XRF also prequalifies samples for off-site lab analysis, which ensures only the best samples are evaluated.

Below are specific applications of the PXRF within mining/geology:

Exploration

XRF analysers quickly deliver exploration data for quantitative geochemical analysis of metal concentrations for mine mapping. 

Production and Mineral Processing

Fast, laboratory-grade sample analysis data for process control, quality assurance and other operational decisions.

Mine Site Analysis and Extraction

Send data to quarry laboratory and operations management personnel for easy collaboration and informed decisions. 

Industrial Minerals Evaluation

In-quarry exploration and evaluating the composition of raw materials such as phosphate, potash, gypsum and limestone for industrial use.

Oil & Gas Exploration

Valuable for upstream exploration and production, offering rapid, on-site chemical analysis of rocks, cuttings, and cores that can be used for identifying formations and determining mineral composition of the rock. Users can infer mineralogical properties favourable to oil and gas production from data collected in real time. 

 

Toys and Consumer Goods

Consumer goods such as toys, apparel, jewellery, cosmetics and furniture are now routinely screened using XRF analysers. This protocol largely came as a result of The Consumer Product Safety Improvement Act (CPSIA) of 2008, which was signed into law to combat the alarming amounts of lead found in children’s toys.

Both the U.S. Consumer Product Safety Commission (CPSC) and Europe’s PROSAFE (Product Safety) use XRF analysers for screening toys and consumer goods.

Worldwide Restriction of Hazardous Substances (RoHS) regulations continue to impact the manufacturers of electrical and electronic goods and their supply chains…as do the halogen-free initiatives. Handheld XRF analysers help enforcement agencies screen goods for:

  • Mercury
  • Lead
  • Other harmful materials

 

Environmental Analysis / Remediation

PXRF analysers provide on-site analysis of environmental contaminants, from hazardous site modeling and risk assessment to on-site contaminant screening and lead paint abatement.

Lead Paint Inspection

Government regulations, such as the U.S. EPA-issued Renovation, Repair and Painting (RRP) Rule, mandate lead-safe work practices for contractors performing renovations. XRF analysers provide conclusive results for lead in samples as referred to in AS/NZS 4361.2:2017associated with the abatement and control of lead-based paint for compliance with RRP and other state and federal requirements.

Soil

Industrial and agricultural sites can become contaminated with lead, arsenic, cadmium, chromium, and other toxic metals. The first remedial step in treating these hazardous areas is accurately assessing the scope and extent of the pollutants in the soil.

XRF analysers provide lab-grade performance in the field, permitting surgical delineation of contamination boundaries while in full compliance with US EPA Method 6200. 

 

Art and Archaeometry

PXRF analysers can collect quantitative elemental data from archaeological samples. This data can be used to:

  • Match pigments and other materials for restoration
  • Help identify how objects have been preserved in the past
  • How to better conserve them for the future
  • Glean important clues to the age of petroglyphs
  • Identify alloys and other materials
  • Help authenticate a variety of art and artifacts

The Native American Graves Protection and Repatriation Act (NAGPRA) requires that Native American cultural artifacts be returned to lineal descendants or affiliated tribes. XRF technology can be used to evaluate these objects for the presence of arsenic or other harmful preservatives before they are returned.

As you can see, the portable XRF devices are incredibly versatile and have a broad range of applications. This is thanks to the software, which can be interchanged within the same device.

To find out more and read the full XRF Technology ebook from Thermo Scientific, click on the button below:

XRF (X-Ray Fluorescence) Explained

XRF (X-Ray Fluorescence) Explained

 

Portable Analytical Solutions

XRF Explained

XRF (X-ray Fluorescence) is a non-destructive analytical technique used to determine the chemical composition of materials.

 It has a broad range of applications across many industries, so to understand if and how it might work within your field, let’s take a closer look at what it is.

Specifically, in this article we will discuss:

  • What XRF is
  • How it works
  • Strengths & limitations of XRF

What is an X-Ray

Quite simply, X-rays are light waves that we cannot see. They have a very short wavelength, which corresponds to a very high energy, meaning they can pass through most objects.

X-Ray Properties:

  • Propagated in straight lines at speed of light
  • Absorbed while passing through matter, depending on composition and density of the substance
  • Emitted with energies characteristic of the elements present
  • Affect the electrical properties of liquids and solids
  • Cause biological reactions such as cell damage or genetic mutation
  • Darken photographic plates
  • Ionize gases

What is X-Ray Fluorescence (XRF)?

XRF occurs when a fluorescent (or secondary) x-ray is emitted from a sample that is being excited by a primary x-ray source. XRF is an excellent technology for qualitative and quantitative analysis of material composition, because the fluorescence is unique to the elemental composition of the sample – hence why it is so versatile and has a wide range of applications.

The X-Ray Fluorescence Process

A solid or liquid sample is irradiated with high energy x-rays from a controlled x-ray tube.

 

When an atom in the sample is struck with an x-ray of sufficient energy (greater than the atom’s K or L shell binding energy), an electron from one of the atom’s inner orbital shells is dislodged. 

 

The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom’s higher energy orbital shells.

 

The electron drops to the lower energy state by releasing a fluorescent x-ray. The energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron. The measurement of this energy is the basis of XRF analysis.

X-Ray Fluorescence Process

What are Portable XRF (PXRF) Analysers?

Handheld and portable XRF analysers provide instant analysis in any field environment, thanks to their lightweight design and ease of use. They are routinely used for rapid quality control inspection and analysis to ensure product chemistry specifications are met, and have become the standard for non-destructive elemental analysis in a wide range of applications.

Now on their seventh generation, portable XRF technology has become increasingly sophisticated, with new capabilities including smaller size, increased speed, better performance and greater ease of use.

Today’s portable XRF analysers are miniaturised and designed for ultra high speed with lab-quality performance.

 

How PXRF Analysers Detect X-Rays

The detector is an important part of all XRF instrumentation, since it is responsible for determining the elements present in a given sample by accurately and nondestructively “reading” the fluorescent x-rays.

When the characteristic x-rays enter the detector, their electromagnetic energies are converted to electrical pulses. These pulses are then sorted into element channels in a Digital Signal Processor (DSP).

Next, the “counts” from each element are sent to the microprocessor, which contains the algorithms for calculating the concentration of each element from the count rate data.

There are two main types of detectors in handheld XRF technology:

 

Silicon Drift Detectors (SDDs)

SDDs are high-resolution detectors that can be used in high count-rate applications. The larger the active area of the detector, the more efficiently it can gather and process x-ray counts.

XRF instrumentation employing SDD can be used in applications that require extreme sensitivity, such as the detection of tramp elements that can degrade the performance of alloys.

Residual elements can be measured with a confidence once only possible in the lab. SDD’s are also required to analyse light elements such as Magnesium (Mg), Aluminium (Al), Silicon (Si), Phosphorus (P) and Sulfur (S).

The introduction of SDDs into PXRF instruments has produced significant performance improvements over traditional XRF capabilities.

 

PIN Detectors

This is a high-performance, high-resolution technology conventionally used in handheld and portable XRF instrumentation. It is appropriate for numerous industry applications.

PIN Detectors measure the fluorescence radiation emitted from the sample after it has been irradiated, usually by an x-ray tube (occasionally by a radioactive source). 

Instruments with Silicon PIN detectors are sensitive to X-rays that are higher on the periodic table than Sulfur (S) and tend to be less expensive than instruments with Silicon Drift Detectors. 

 

Limitations of Handheld XRF

The fluorescent x-rays from lighter elements (Z<18) are less energetic and are greatly attenuated as the x-rays pass through air, meaning analysis of these elements with handheld XRF can be challenging.

Spectral Effects

Some elements have lines that overlap other elements, which can make detection challenging – especially when two overlapping elements are present.

Fortunately the software will strip out and correct most of these overlaps (as long as the interfering element is in the mode being used).

Matrix Effects

The matrix refers to any other element present in the sample, other than the one element being considered. 

If however you are using a fundamental parameters based calibration with all the necessary elements present, enhancement and absorption effects are typically taken care of in the software.

Enhancement Effects

Some fluorescent x-rays have more energy than the binding energy of other elements present in the sample, so their energy will excite those other elements. These elements will give a greater signal return to the detector, therefore “enhancing” the reading.

Absorption Effects

If the fluorescent x-ray is scattered or absorbed by other elements present in the sample, it will not reach the detector so the signal is weaker.

Sample Effects

XRF is a surface analysis technique, so if the surface of the material being analysed is not representative of the entire sample (particle size, inhomogeneity, surface contamination etc) the results will be skewed.

 

Strengths of Portable Handheld XRF Analysers

  • Lightweight
  • Easy to use
  • Cost-effective
  • Nondestructive
  • Accurate results
  • Instant results
  • Portable
  • Used onsite

 

If you’d like to discuss your PXRF requirements, please get in touch and chat with one of our experts.

New distribution partnership with LemnaTec GmbH

New distribution partnership with LemnaTec GmbH

Portable Analytical Solutions is pleased to announce a new distribution partnership with LemnaTec GmbH, a global specialist for digital phenotyping and digital seed testing.

Juergen Kreis, Managing Director of LemnaTec explains “With this move, LemnaTec broadens its presence in the South Pacific and strengthens support for its customers in Australia, New Zealand and the Pacific Island regions. With our growing range of phenotyping solutions, customer proximity and consulting competence are of paramount importance. With PAS, we have found an experienced partner that brings added value to our local customers through its excellent technical understanding as well as its wide range of complementary products.”

Paul Martin, our very own Managing Director at PAS, says “With the growing market space of Plant Phenotyping in our region PAS is excited to partner with LemnaTec to bring great products to our customers and support the current LemnaTec customers in the region. Supplying complete solutions to our customers is important to PAS, and we see a great future ahead with the LemnaTec product portfolio.”

For over 11 years, Portable Analytical Solutions has proudly supplied scientific product solutions to industrial, governmental, education, research and science institutions throughout Australia, New Zealand and the South Pacific Islands. PAS focus is on the supply of Lab to Field Solutions to improve application development, implementation and support for our customers and their products. For further information, please contact us.

Airborne Hyperspectral Imaging Solutions

AIRBORNE HYPERSPECTRAL IMAGING SOLUTIONS

Created By Analytik, United kingdom

Watch the video to find out more about airborne hyperspectral imaging.

To appreciate the significance of airborne hyperspectral imaging, Analytik has created an informative video to understand what hyperspectral imaging is, and how it works.

Airborne Hyperspectral Imaging (or Remote Sensing) collects and process information across different bands of the electromagnetic spectrum via an aerial vehicle, such as a drone. Hyperspectral Imaging Sensors collect spectral information from a large area (such as a forest) as a set of images, allowing the identification of objects and materials through their individual characteristics (or “spectral fingerprint”).

The electromagnetic spectrum consists of multiple bands of electromagnetic radiation which is separated by size and frequency.

Want to learn more? Continue watching the video provided by Analytik to understand more about hyperspectral imaging.

HeadWall Products

Airborne Solution example

 VNIR-SWIR CO-ALIGNED + INTERNAL DATA STORAGE + GPS-IMU

Headwall’s Co-Aligned Dual VNIR-SWIR sensor package with co-aligned pixels for superb imaging performance from 400-2500nm.

Key Benefits of the Hyperspec VNIR – SWIR Co-Aligned from HeadWall Photonics.

  • Superb imaging performance
  • Wideband coverage
  • Pixel co-alignment through software
  • Small form-factor, lightweight
  • Robust and environmentally rugged
  • Aberration-corrected
  • High spatial and spectral resolution
  • Wide field-of-view

View the quick start for airborne Systems – witness application examples

Headwall has released a serious of quick start videos for Airborne Systems demonstrating application examples and how to use the Software & Systems. Simply check them out below……

Quick Start UAV-Nano Part 01: Unboxing

Quick Start UAV-Nano Part 02: Software Pre Flight Preparation

Quick Start UAV-Nano Part 03: Flight and Data Download

Quick Start UAV-Nano Part 04A: Data Post Processing

Quick Start UAV Nano Part 04B: Post-Processing of High-Performance GPS/IMU Data

Webinars & Demos: Software & Systems

Headwall LiDAR Tools Tutorial with Examples of LAS DEM HSI-LiDAR Fusion

Headwall Hyperspectral Imaging Seminar at the University of Colorado – Boulder

Important COVID-19 Announcement: Portable Analytical Solutions

Important COVID-19 Announcement:

Portable Analytical Solutions

As the COVID-19 virus and its impact continues to evolve on a daily basis, PAS remains focused on the health and safety of our employees and customers, as well as our community.

We’re doing everything we can to continue delivering our products and services to minimise any impact to our clients. We have implemented some travel restrictions on our staff, but we are still here to support you and your needs. We are working hard to ensure an uninterrupted, dependable service is delivered by our Sales, Customer Service, Support and Administration staff.

 

Continuation of PAS Virtual Demos / Training:
Until further notice, our Product and Sales teams are continuing to offer and assist in virtual demonstrations. Please contact our Sales team for further information.

With many staff now working from home, we are still able to offer online/VC user and radiation training where attendees are located in multiple locations.

 

PAS Customer Support:
Our Customer Service team is still fully operational and available for support, instrument repairs, and spare parts. They can be reached using the following contact information:
+61 2 4381 2844
info@portableas.com

 

PAS Visitors:
We are currently limiting the number of Sales and Administration employees working at our office facility. If you wish to visit our office, please call in advance to inform us.

 

PAS Building / Equipment Sanitation:
To protect our staff and customers, we are cleaning and disinfecting all work areas and equipment as per suggested government guidelines. Products entering and leaving the Service Department will also be cleaned.

We will continue to closely monitor the situation, stay focused on keeping our employees healthy, and provide the support you need.

 

Regards,

Paul Martin
Managing Director
Portable Analytical Solutions Pty Ltd.

MicroPHAZIR AS Performance Application Note 2020

Measurement of Asbestos Containing Materials using a Portable NIR Instrument

Dr Jimmy Bester, Paul Martin, Sydney Australia

Abstract

Portable Near-­Infrared (PNIR) spectroscopy has been effectively and reliably used to measure minerals in a wide variety of samples. The identification of Asbestos Containing Materials (ACM) is possible by PNIR and as such, the performance of the products and the results generated are of great interest to industry. Comparing results obtained via laboratory ­based PLM­DS technique and that of PNIR is key to demonstrating the performance and improved capability of these portable instruments.

Introduction

Current industry standards for measuring ACM requires a portion of the sample to be removed from its location and sent to a laboratory for analysis by Polarized Light Microscopy with Dispersion Staining. Although this is an accredited method, there are several technical challenges to PLM including, but not limited to the technical skill of an operator to interpret what is being visually seen, that it can only detect 3 types of asbestos accurately adding to the time delays on getting results back from the lab.
However, measurement of ACM by PNIR allows for the detection of 6 regulated asbestos minerals including chrysotile, crocidolite, anthophyllite, tremolite, actinolite and amosite, meaning a high chance to correctly identify the presence of ACM if contained in the sample. The PNIR is simple to use as in most cases the samples are not required to be removed from the site and testing times of approximately 6 sec, allows for a rapid in­situ screen of possible ACM material.

 

Experiment

Two (2) Version 5 ThermoScientific microPHAZIR AS Spectrometers were used by trained operators to analyse a total of 49 mixed origin samples. These particular samples were chosen as they are used in the NATA laboratory round­-robin proficiency testing programme and were accessed for analysing to compare the PLM­DS technique and the PNIR results as accurately as possible.

Each of the 49 samples was scanned 5 times by both PNIR instruments, by placing the sample in contact with the nose of the PNIR and measuring for the fixed time of approximately 6 sec. A large proportion of the samples provided were smaller than the AS 9649 Standard recommendation of 10mm2 but the design of the instrument made it possible to make diffuse reflection measurements from the portion of the sample. The sample was relocated after each scan in order to cover as large an area of the sample as possible, this simulated ‘on­site’ analysis conditions and no additional sample preparation was carried out.

Results from the PNIR were reported on the device as the measured type of asbestos, but as the PNIR instruments are primarily used for detecting the presence or absence of ACM, results were converted to ACM present or NAD (No Asbestos Detected). Results were reported by averaging the 5 readings i.e. 3 or more of the same reading indicating the result. Table 1 shows the average results for each instrument compared to the PLM lab data

MicroPHAZIR AS Asbestos Analyser
Thermo Scientific’s microPHAZIR AS can provide ACM identification in seconds

 Thermo Scientific’s microPHAZIR AS can provide ACM identification in seconds

Table 1 Average of results or all samples

Table 1 Average of results or all samples

Results

Results for each sample obtained from the two PNIR instruments can be seen in Table 1, results were constant between the two PNIR instruments, indicating the stability of both the instruments and the calibration modes. Worth noting, for samples identified as UMF (unknown Mineral Fibres) by PLM methods, PNIRS results are assumed to be correct as NAD.
In summary both PNIR instruments correctly read 48 of the 49 samples or 98%, with both instruments incorrectly reading sample PRC­-1 the putty sample. This one incorrect reading was not investigated further for the purpose of this application note, but maybe later.

Table 2 Summary table

Table 2 Summary table

Conclusion

Based on the results obtained, it is clear that the microPHAZIR AS PNIR is able to consistently and repeatably measure a wide range of ACM materials.

The use of the microPHAZIR AS in the waste transfer, demolition, emergency response and other critical applications is highly beneficial to improving the safety and protection of workers and the public.

Screen Shot 2020-03-10 at 12.03.33 pm

Note: For more details on this application note please request a copy of the PAS­ technical paper “PORTABLE NEAR­INFRARED SPECTROSCOPY (PNIRS) TECHNOLOGY FOR THE IDENTIFICATION OF ASBESTOS IN BUILDING MATERIALS’ by emailing sale@portableas.com

Request the Completed White Paper

Soon-to-be-available 

  • This field is for validation purposes and should be left unchanged.

Comments regarding QLD Safety Alert of the use of NIR Spectrometers

Comments regarding QLD Safety Alert of the use of NIR Spectrometers

Recently the QLD government posted a Safety alert regarding the use of NIR spectrometers for the identification of Asbestos containing materials.  As we feel the alert was focused at the Thermo Scientific MicroPHAZIR AS spectrometer, we consider it is best to clarify the situation from our perspective.

Firstly, and most importantly; PAS agrees with the comment made in the alert that the only approved method noted in the Queensland Work Health and Safety Regulation 2011, is that samples need to be analysed by a NATA accredited Laboratory using a PLM technique referred to in AS  4964-2004. As our customers and potential customers have been made aware, the microPHAZIR AS is not intended to be used to replace laboratory sampling methods, as at this time, it is not an approved method.

Both the manufacturer and PAS have carried out extensive internal and independent testing through groups such as KIWA laboratories in Europe, these tests have satisfied many of our local and state governments, emergency response departments and private sector customers throughout Australia and New Zealand, who have been using the MicroPHAZIR AS as a support tool in their working environments for a number of years.

In a meeting recently held with a representative of the QLD government, it was indicated to PAS that more peer-reviewed literature was required,especially around the performance of the new,improved version 5 MicroPHAZIR AS system. PAS has taken this advice and through our in-house Asbestos expert Dr Jimmy Bester, started to work on having these Peer-reviewed papers prepared through local University teams.

PAS is committed to complying with local laws and regulations, and working with industry to improve the safety of workers, and the public through the innovation of instrumentation such as the MicroPHAZIR AS.  If you have any questions, please feel free to contact me directly on 02 43812844.

Paul Martin

Managing Director

Portable Analytical Solutions Pty Ltd

Headwall & Israel Aerospace Industries (IAI) Awarded Contract for High-Endurance Fixed-Wing Hyperspectral Imaging UAV for Wide Area Precision Agriculture

Headwall & Israel Aerospace Industries (IAI) Awarded Contract for High-Endurance Fixed-Wing Hyperspectral Imaging UAV for Wide Area Precision Agriculture

Project funded in part by the BIRD (Binational Industrial Research and Development) Foundation

Bolton, MA – August 1, 2019 –Headwall, the industry leader in turnkey hyperspectral imaging solutions for remote sensing and precision agriculture, and Israel Aerospace Industries (IAI), a leader in UAV technology, announced that a project valued at  approximately $1 million USD for large-scale precision agriculture has been awarded by the Binational Industrial Research and Development (BIRD) Foundation to develop a high endurance UAV and hyperspectral imaging solution for agricultural customers with thousands of hectares of crops.

Image courtesy Israel Aerospace Industries (IAI); drone over agricultural fieldDevelopment of the Precision Agriculture Decision Support System will utilise a custom-designed and manufactured wide-area hyperspectral imaging payload and a fixed-wing UAV designed for beyond visual line of sight (BVLOS) missions, as well as analytics that allow accurate assessment of crop and soil conditions as well as crop disease over a wide area with high resolution and positional accuracy.

“Headwall has always strived for commercialisation of advanced spectral imaging technology for the benefit of customers worldwide,” David Bannon, CEO of Headwall commented. “IAI combines rugged and reliable military technology with commercial know-how for this project to assist farmers with decisions based on comprehensive yet rapid reports made possible by our sensor systems. Deployment of high endurance solutions for wide area data acquisition integrated with advanced hyperspectral and multispectral sensors is a game changer for the agriculture industry”.

Projects submitted to the BIRD Foundation are reviewed by evaluators appointed by the U.S. National Institute of Standards and Technology (NIST) and the Israel Innovation Authority.

Dr. Amiram Appelbaum, Chief Scientist at the Ministry of Economy and Industry, Chairman of the Israel Innovation Authority and co-Chairman of BIRD’s Board of Governors said, “The U.S. is one of Israel’s major partners for innovation. We are proud of our long-standing collaboration with the BIRD Foundation that has resulted in such spectacular successes over the decades and numerous groundbreaking technological innovations offered by both Israeli and U.S recipients of the grant. We are confident that this year’s grant recipients in the various fields and the new projects approved will prove vital for the population worldwide.”

About Headwall

Headwall Photonics is a leading designer and manufacturer of spectral instrumentation for remote sensing, advanced machine vision, and government/defense markets. With a worldwide base of end-user and OEM customers, Headwall enjoys a market leadership position through the design and manufacture of spectral solutions that are customised for application-specific performance. The Company is based in Massachusetts where it has two locations (Bolton and Fitchburg). European operations (Headwall BVBA) are located near Brussels, Belgium.

About IAI

Israel Aerospace Industries (IAI) is a leader in both the defense and commercial markets, delivering state-of-the-art technologies and systems in all domains – providing customers with tailored, cutting-edge solutions in the unique challenges that they face. IAI provides a wide range of solutions and services from special mission aircraft to advanced unmanned aerial systems (UAS).

About the BIRD Foundation

The BIRD (Binational Industrial Research and Development) Foundation works to encourage and facilitate cooperation between U.S. and Israeli companies in a wide range of technology sectors and offers funding to selected projects.

Hyperspectral Imaging in Quality Control for the Global Meat Industry

Let’s take a look at the role of Hyperspectral Imaging in Quality and Integrity for the Global Meat Industry.

One of the international speakers at next week’s ICoMST 2018 (64th International Congress of Meat Science and Technology) is Dr Marlon dos Reis, Senior Scientist – Food and Bio-based Products at AgResearch in New Zealand.

ICoMST is to be held in Melbourne with the theme of Quality and Integrity for Global Consumers. e.g. Test whether lamb meat is really lamb.

We can’t wait to hear Dr dos Reis speak on “Chemometrics and hyperspectral imaging applied to assessment of chemical, textural and structural characteristics of meat”, corresponding to his work to be published in Volume 144 of the Meat Science Journal (October 2018)

A video of Dr dos Reis’ presentation will be available after the congress.

Applications for Chemometrics in Meat Science

In his career, Dr dos Reis has focus ed on the application and development of spectroscopic techniques for the assessment of meat, including techniques based on nuclear magnetic resonance, NIR spectroscopy and Hyperspectral imaging.

Dr Marlon dos Reis, New Zealand - Hyperspectral Imaging Expert

Attracted to AgResearch in New Zealand in 2007, Marlon is excited to apply chemometrics across so many applications and we are excited to learn from him first-hand. In an interview recorded on the AgResearch website, he explained his current projects.

“In Chemometrics we develop and apply statistical and mathematical models to interpret and do better use of data related to chemistry. For example in food assurance we collected spectroscopic data (e.g. near infrared spectra) which brings lots of information about the chemical composition and structure of food.

“This type of data is very easy to collect but needs chemometric models to be useful. So I develop chemometric models for applications such authentication (e.g. test whether lamb meat is really lamb), to predict functional attributes (e.g. bulk density of dairy powder) assess whether the product is still within the expected shelf-life and others.”

A Major Focus for Headwall Photonics and Portable Analytical Solutions (PAS)

Using Hyperspectral Imaging in Food Safety and Pathogen Detection

Headwall’s Infrared Hyperspectral solutions offer a depth of vision far beyond the capabilities of any other technology.

It is a major step forward in the successful detection of foreign matter and pathogens that are unseen visually but impact the safety of the foods we eat. From poultry and seafood to lamb, beef, and specialty crops, spectral imaging delivers a level of material classification that far exceeds typical RGB cameras.

PAS has been the Australia / New Zealand distributor of Headwall spectral imaging including the award-winning Hyperspec® instruments since 2013. We provide sales support, service and training for these application-specific, rugged and versatile analysers.

Contact PAS about these key products

 

X