Malvern Panalytical Scientific Award 2023

Our 2023 Scientific Award is now open – and there’s a €5,000 prize for the best entry.
Entries close August 31st – you’ve still got time!

Hyperspectral Imaging in Quality Control for the Global Meat Industry

Let’s take a look at the role of Hyperspectral Imaging in Quality and Integrity for the Global Meat Industry.

One of the international speakers at next week’s ICoMST 2018 (64th International Congress of Meat Science and Technology) is Dr Marlon dos Reis, Senior Scientist – Food and Bio-based Products at AgResearch in New Zealand.

ICoMST is to be held in Melbourne with the theme of Quality and Integrity for Global Consumers. e.g. Test whether lamb meat is really lamb.

We can’t wait to hear Dr dos Reis speak on “Chemometrics and hyperspectral imaging applied to assessment of chemical, textural and structural characteristics of meat”, corresponding to his work to be published in Volume 144 of the Meat Science Journal (October 2018)

A video of Dr dos Reis’ presentation will be available after the congress.

Applications for Chemometrics in Meat Science

In his career, Dr dos Reis has focus ed on the application and development of spectroscopic techniques for the assessment of meat, including techniques based on nuclear magnetic resonance, NIR spectroscopy and Hyperspectral imaging.

Dr Marlon dos Reis, New Zealand - Hyperspectral Imaging Expert

Attracted to AgResearch in New Zealand in 2007, Marlon is excited to apply chemometrics across so many applications and we are excited to learn from him first-hand. In an interview recorded on the AgResearch website, he explained his current projects.

“In Chemometrics we develop and apply statistical and mathematical models to interpret and do better use of data related to chemistry. For example in food assurance we collected spectroscopic data (e.g. near infrared spectra) which brings lots of information about the chemical composition and structure of food.

“This type of data is very easy to collect but needs chemometric models to be useful. So I develop chemometric models for applications such authentication (e.g. test whether lamb meat is really lamb), to predict functional attributes (e.g. bulk density of dairy powder) assess whether the product is still within the expected shelf-life and others.”

A Major Focus for Headwall Photonics and Portable Analytical Solutions (PAS)

Using Hyperspectral Imaging in Food Safety and Pathogen Detection

Headwall’s Infrared Hyperspectral solutions offer a depth of vision far beyond the capabilities of any other technology.

It is a major step forward in the successful detection of foreign matter and pathogens that are unseen visually but impact the safety of the foods we eat. From poultry and seafood to lamb, beef, and specialty crops, spectral imaging delivers a level of material classification that far exceeds typical RGB cameras.

PAS has been the Australia / New Zealand distributor of Headwall spectral imaging including the award-winning Hyperspec® instruments since 2013. We provide sales support, service and training for these application-specific, rugged and versatile analysers.

Contact PAS about these key products

Precision Ag study employs FieldSpec4

Measuring solar radiation in Australian study with the ASD FieldSpec4

A new article published by Apple and Pear Australia Limited (APAL) highlights an innovative application of the FieldSpec4 multi-spectral radiometer to measure solar radiation exposure on apple and pear crops, covered with several varieties of netting.

As the article’s abstract reads, “Netting intercepts solar radiation, reducing the amount of energy reaching fruit and hence lowering the risk of sunburn and colour bleaching of fruit. However, netting also lowers radiation 
that is needed for photosynthesis and colour development. In this article we present some preliminary data on the effects of netting on some important wavelengths of light.”

The FieldSpec4 was a key part of the study, measuring solar radiation in 2nm increments from 350nm to 2500nm, extracting wavebands corresponding to solar radiation, ultraviolet A radiation, photosynthetically active radiation and infrared radiation. A black curtain placed around the radiometer minimised reflective radiation.

The study describes the positioning of the spectrometer which remained stationary below the netting, while the netting was moved laterally throughout the process. The spectrometer was facing upwards.

ASD FieldSpec4 positioning

FieldSpec4 for your application

The wide range of portable analysis solutions available from PAS are versatile and customisable to an amazing degree, dependent on the specific demands of each application. Our engineers are specialists in calibrating instruments to suit your particular objectives, constraints and conditions.

Learn more about the comprehensive ASD FieldSpec range available through PAS in Australia or New Zealand. Consider other hyperspectral analysers for different situations, such as airborne sensors.

Read the article on the apple/pear production using the ASD FieldSpec4 multi-spectral here

 

 

 

 

Airborne Hyperspectral & Ground-Truthing

Hyperspectral and Ground-Truthing Whitepaper available from PAS

For a wide range of critical applications, the combination of airborne hyperspectral with ground-based non-imaging hyperspectral radiometers represents the optimal solution. A comprehensive white paper on the topic, written by Headwall Photonics and ASD Inc, part of Malvern Panalytical, is one of many available from PAS for your reference. The paper offers excellent background and specific examples of applications, procedures and results.

The worldwide precision agriculture industry is vital on so many fronts because countries depend on the revenue derived from citrus, wine-grapes, nuts and other specialty crops. Also, famine relief is the byproduct of successfully planting and harvesting crops in harsh and unforgiving climates.

Hyperspectral imaging is playing an increasingly large role here because economic and life-sustaining decisions need data that is precise and actionable. Yet, while hyperspectral images contain a wealth of data, accurate interpretation of the image requires first-hand familiarity of the surface being analysed.

In the absence of ground-truthing, remotely sensed image analysis and classification is really no more than an inference or assumption regarding earth surface conditions no matter how spatially or spectrally resolute the source image happens to be.

Ground-based reference measurements can be used to verify airborne hyperspectral data, which means the combination represents a powerful solution for the remote-sensing community. As leaders in their respective areas, Headwall and ASD understand the relationship between ground-truthing and hyperspectral.

Spectral range for ground-truthing and hyperspectral

Case study: Wyoming Assessment Project and Remote Sensing of Leafy Spurge – A.P. Williams, D.J. Kazmer

A fundamental research need in leafy spurge and invasive plant management as a whole is cost-effective, large-scale mapping of plant populations. Hyperspectral airborne data was acquired over a

25-square-mile study area in Crook County, Wyoming. ASD’s FieldSpec spectroradiometer collected ground calibration and reflectance data of leafy spurge, other vegetation and soils. These spectra were used to perform spectral mixture analysis on the hyperspectral scene. A major advantage of this technique is that it can effectively unmix a pixel and provide an estimate of the real extent of leafy spurge within the pixel.

 

To further explore these techniques and your specific application, talk to the team at PAS in Australia or New Zealand.

 

Precision Ag history heralds bright future

Over the past two decades, precision ag history has been marked by rapid development and positive outcomes.

Precision ag has become, well, much more precise.

According to David Mulla from the University of Minnesota, USA, in his article on Precision Ag history, “Spectral bandwidth has decreased dramatically with the advent of hyperspectral remote sensing, allowing improved analysis of specific compounds, molecular interactions, crop stress, and crop biophysical or biochemical characteristics.

Portable Analytical Solutions has relished our partnership with spectrometry specialist Headwall Photonics as we equip agribusiness with higher-quality data and more sophisticated planning and risk reduction. The result has been greater profitability, identification and mitigated risk and increased crop security.

This 2017 slideshow gallery includes actual product used by Jeff Boyer, superintendent of the Davis-Purdue Agricultural Center near Farmland, Indiana, USA.

Do any of these ‘museum exhibits’ look familiar?

If you are more interested in the future of precision ag, remote sensing or groundtruthing, speak to PAS today.